Inhaltsverzeichnis
- 01. Wie erfolgt die Aufbereitung von Messstichproben?
- 02. Welche Prüfmethoden werden im Rahmen der Qualitätskontrolle eingesetzt?
- 03. Wie erfolgt die statistische Qualitätskontrolle unter der Annahme der Normalverteilung?
- 04. Welche (einfachen) Prüfmethoden werden außerdem in der Qualitätskontrolle eingesetzt?
- 05. Wie sind Regelkarten zu interpretieren?
- 06. Wie wird der Fehleranteil im Prüflos und in der Grundgesamtheit berechnet?
01. Wie erfolgt die Aufbereitung von Messstichproben?
Mithilfe der Stichprobentheorie lässt sich von Teilgesamtheiten (z. B. einer Stichprobe) auf Grundgesamtheiten schließen. Die Verdichtung der Daten erfolgt durch die Berechnung von Maßzahlen. Entsprechend dem Rahmenplan werden hier folgende Parameter behandelt:
Bei der nachfolgenden Darstellung und Berechnung werden folgende allgemein üblichen Symbole und Zeichen verwendet (im Allgemeinen benutzt man bei der Kennzeichnung von Maßzahlen der Grundgesamtheit griechische und bei der Kennzeichnung von Maßzahlen der Stichprobe lateinische Buchstaben):
xi | alle Messwerte/Merkmalsausprägungen der Urliste/Stichprobe (i = 1, …, n) |
xj | die verschiedenen Messwerte/Merkmalsausprägungen der Urliste/Stichprobe (j = 1, …, r) |
μ | Mittelwert der Grundgesamtheit |
N | Umfang der Grundgesamtheit |
σ2 | Varianz der Grundgesamtheit |
σ | Standardabweichung der Grundgesamtheit |
Mz | Median (Zentralwert) |
Mo | Modalwert (Modus; häufigster Wert) |
\bar{x} | Mittelwert der Stichprobe |
n | Umfang der Stichprobe |
s2 | Varianz der Stichprobe |
s | Standardabweichung der Stichprobe |
R | Spannweite |
∑ | Summenzeichen |
Die Beispielrechnungen gehen von folgender Messwertreihe aus: (i = 1, … 30):
4,35 | 4,80 | 3,75 | 4,95 | 4,20 | 5,10 | 4,65 | 6,00 | 4,05 | 5,25 |
5,10 | 4,50 | 3,15 | 5,25 | 4,65 | 3,45 | 5,85 | 4,50 | 5,55 | 4,80 |
6,45 | 4,05 | 3,00 | 4,20 | 5,10 | 3,15 | 5,40 | 4,65 | 5,10 | 4,50 |
Zu berechnen sind folgende Parameter der Messreihe:
das arithmetische Mittel
der Median
der Modalwert
die Spannweite
die Varianz
die Standardabweichung.
A. Berechnung von Maßzahlen der Grundgesamtheit:
Das arithmetische Mittel μ
einer Häufigkeitsverteilung ist die Summe aller Merkmalsausprägungen dividiert durch die Anzahl der Beobachtungen:
μ, ungewogen:
$$μ = \frac{Σ x_{i}}{N}$$
i = 1, 2, …, N
μ, gewogen:
$$μ = \frac{Σ N_{J}\; x_{j}}{N}$$
j = 1, 2, …, r (r = Anzahl der verschiedenen Merkmalsausprägungen)
Beispiel
4,35 4,80 3,75 4,95 4,20 5,10 4,65 6,00 4,05 5,25 47,10 5,10 4,50 3,15 5,25 4,65 3,45 5,85 4,50 5,55 4,80 46,80 6,45 4,05 3,00 4,20 5,10 3,15 5,40 4,65 5,10 4,50 45,60 ∑ = 139,50 $$μ = \frac{Summe\; der\; einzelnen\; Werte}{Anzahl\; der\; Werte}$$
$$ = \frac{139,5}{30} = 4,65$$
Median Mz (= Zentralwert):
Ordnet man die Werte einer Urliste der Größe nach, so ist der Median dadurch gekennzeichnet, dass 50 % der Merkmalsausprägungen kleiner/gleich und 50 % der Merkmalsausprägungen größer/gleich dem Zentralwert Mz sind. Der Median teilt also die der Größe nach geordneten Werte in zwei gleiche Hälften:
bei N = gerade
ist der Median das arithmetische Mittel der in der Mitte stehenden Werte:
$$M_{z} = \frac{1}{2} \cdot (x_{N/2} + x_{N/2+1})$$
bei N = ungerade
ist der Median der in der Mitte stehende Wert der geordneten Urliste:
$$M_{z} = x_{(n+1)/2}$$
Beispiel
Angenommen, man würde die vorliegende Messreihe von 30 Werten um den Wert x31 = 6,55 ergänzen, so erhält man als Median den Wert x16:
$$M_{z}\; = x _{(31+1)/2} = x_{16} = 4,65$$
Da es sich beim Median um einen relativ groben Lageparameter zur Charakterisierung einer Verteilung handelt, sollte er nur bei einer kleinen Messreihe ermittelt werden. Im vorliegenden Fall von 30 Urlistenwerten ist er eher nicht zu empfehlen.
Als Modalwert Mo (= dichtester Wert = Modus) bezeichnet man innerhalb einer Häufigkeitsverteilung die Merkmalsausprägung mit der größten Häufigkeit (soweit vorhanden):
Beispiel
Aus der vorliegenden Häufigkeitstabelle lässt sich der Modalwert direkt ablesen: Es ist die Merkmalsausprägung mit der maximalen Häufigkeit.
Nj = 4 Mo = 5,10 Mittelwerte, die die Lage einer Verteilung beschreiben, reichen allein nicht aus, um eine Häufigkeitsverteilung zu charakterisieren. Es wird nicht die Frage beantwortet, wie weit oder wie eng sich die Merkmalsausprägungen um den Mittelwert gruppieren.
Man berechnet daher so genannte Streuungsmaße, die kleine Werte annehmen, wenn die Merkmalsbeträge stark um den Mittelwert konzentriert sind bzw. große Werte bei weiter Streuung um den Mittelwert.
Die Spannweite R (= Range) ist das einfachste Streuungsmaß. Sie wird als die Differenz zwischen dem größten und dem kleinsten Wert definiert. Die Aussagekraft der Spannweite ist sehr gering und sollte daher nur für eine kleine Anzahl von Messwerten berechnet werden (im vorliegenden Beispiel also eher nicht geeignet).
$$R = x_{max} – x_{min}$$
oder bei geordneter Urliste:
$$R = x_{N} – x_{1}$$
Beispiel
$$R = x_{30} – x_{1} = 6,45 – 3,00 = 3,45$$
Mittlere quadratische Abweichung σ2 (= Varianz):
Bei der Varianz σ2 wird das jeweilige Quadrat der Abweichungen zwischen der Merkmalsausprägung xi und dem Mittelwert x berechnet. Durch den Vorgang des Quadrierens erreicht man, dass große Abweichungen stärker und kleine Abweichungen weniger berücksichtigt werden. Die Summe der Quadrate wird durch N dividiert.
σ2, ungewogen:
$$σ_{2} = \frac{Σ (x_{i} – μ)^{2}}{N}$$
i = 1, 2, …, N
σ2, gewogen:
$$σ_{2} = \frac{Σ (x_{j} – μ)^{2} \cdot N_{j}}{N}$$
j = 1, 2, …, r
Durch Umrechnung gelangt man zu folgender Formel; damit lässt sich die Varianz leichter berechnen:
$$σ^2=\frac{1}{N} \cdot \sum_{j=1}^{n}N_{j} \cdot x_{j}^{2}-μ^2$$Bei einer hohen Zahl von Messwerten empfiehlt sich eine Arbeitstabelle zur Berechnung der Varianz:
xj Nj $$x_{j}^{2}$$ $$N_{j} \cdot x_{j}^{2}$$
xj – μ (xj – μ)2 (xj – μ)2Nj 3,00 1 9,00 9,00 – 1,65 2,72 2,72 3,15 2 9,92 19,84 – 1,50 2,25 4,50 3,45 1 11,90 11,90 – 1,20 1,44 1,44 3,75 1 14,06 14,06 – 0,90 0,81 0,81 4,05 2 16,40 32,80 – 0,60 0,36 0,72 4,20 2 17,64 35,28 – 0,45 0,20 0,40 4,35 1 18,92 18,92 – 0,30 0,09 0,09 4,50 3 20,25 60,75 – 0,15 0,02 0,06 4,65 3 21,62 64,87 0,00 0,00 0,00 4,80 2 23,04 46,08 0,15 0,02 0,04 4,95 1 24,50 24,50 0,30 0,09 0,09 5,10 4 26,01 104,04 0,45 0,20 0,80 5,25 2 27,56 55,12 0,60 0,36 0,72 5,40 1 29,16 29,16 0,75 0,56 0,56 5,55 1 30,80 30,80 0,90 0,81 0,81 5,85 1 34,22 34,22 1,20 1,44 1,44 6,00 1 36,00 36,00 1,35 1,82 1,82 6,45 1 41,60 41,60 1,80 3,24 3,24 ∑ 39 668,97 20,26 Beispiel
$$σ_{2} = \frac{Σ (x_{j} – μ)^{2} \cdot N_{j}}{N}$$
$$ = \frac{20,26}{30} = 0,68\; (gerundet)$$
bzw.
$$σ^2=\frac{1}{N} \cdot sum_{j=1}^{n}N_{j} \cdot x_{j}^{2} - μ^2$$
Die Standardabweichung ist niemals negativ.
Sie kann sehr deutlich steigen, wenn Werte, die weiter von den übrigen entfernt sind, mit in die Berechnung einbezogen werden.
Die Einheit der Messwerte und der Standardabweichung ist identisch.
Die Standardabweichung σ (kurz: Streuung) bzw. s (Standardabweichung der Stichprobe) ist die positive Wurzel aus der Varianz; sie ist das wichtigste Streuungsmaß:
$$s=\sqrt{\frac{ sum_{i=1}^{n}(x_1 - μ)^2}{n-1}}$$$$σ = √ σ_{2}$$
Beispiel
$$σ = √\; 0,68 = 0,82$$
Die Standardabweichung sagt aus, wie groß der Bereich ist, in dem die einzelnen Zahlen verteilt sind. Sie gibt an, wie weit die einzelnen Messwerte im Durchschnitt vom Mittelwert (Erwartungswert) entfernt sind:
Hinweis
In den Prüfungsaufgaben der IHK müssen Sie häufig die Standardabweichung berechnen. Dies ist mithilfe eines modernen Taschenrechners problemlos möglich. Wichtig ist, dass Sie sich im Vorfeld mit der Eingabe der Werte und der Berechnungsfunktion Ihres Rechners vertraut machen. Da sich dies je nach Hersteller und Modell deutlich unterscheidet, ist hierzu ein Blick in die Bedienungsanleitung hilfreich.
B. Berechnung von Maßzahlen der Stichprobe:
Die oben dargestellten Formeln zur Berechnung der Maßzahlen sind – bis auf die Berechnung der Varianz analog; zur Kennzeichnung von Stichprobenparametern wird
statt μ, n statt N, s2 statt σ2 und s statt σ verwendet; somit modifizieren sich die Formeln für den Mittelwert zu:$$\bar{x}=\frac{1}{n}\cdot \sum_{i=1}^{n}x_i$$
bzw.
$$\bar{x}=\frac{\sum_{j=1}^{n}x_{j}\cdot n_{j}}{n}$$
Bei der Berechnung der Varianz einer Stichprobe wird – genau genommen – keine mittlere quadratische Abweichung berechnet, sondern man verwendet die Formel
$$s^2=\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}$$Man dividiert also die Summe der Quadrate durch den um Eins verminderten Stichprobenumfang (= so genannte empirische Varianz). Für die Standardabweichung s gilt Entsprechendes. Es lässt sich mathematisch zeigen, dass diese Berechnungsweise notwendig ist, wenn von der Varianz der Stichprobe auf die Varianz der Grundgesamtheit geschlossen werden soll.
Hinweis
… für die Praxis
Funktionsrechner und Statistik-Software verwenden häufig den Faktor 1n – 1 anstatt 1n. Bitte beachten Sie dies bei der Berechnung von Varianzen, die nicht aus einer Stichprobe stammen.
02. Welche Prüfmethoden werden im Rahmen der Qualitätskontrolle eingesetzt?
Bei der Qualitätskontrolle bedient man sich vor allem der drei folgenden Methoden, die wiederum verschiedene Unterarten verzeichnen:
Statistische Qualitätskontrolle
(Einfache) Methoden der Betriebspraxis
Computergestützte Qualitätssicherung (CAQ).
03. Wie erfolgt die statistische Qualitätskontrolle unter der Annahme der Normalverteilung?
Untersucht man eine große Anzahl von Einheiten eines gefertigten Produktes hinsichtlich der geforderten Qualitätseigenschaften (Stichprobe aus einem Los), so lässt sich mathematisch zeigen, dass die „schlechten Werte“ in einer bestimmten Verteilungsform vom Mittelwert (dem Sollwert) abweichen: Es entsteht bei hinreichend großer Anzahl von Prüfungen das Bild einer Gauss’schen Normalverteilung (so genannte symmetrische Glockenkurve):
Es lässt sich nun mathematisch zeigen, dass – bei Vorliegen einer Normalverteilung der Qualitätseigenschaften -
ungefähr 68,0 % (68,26 %)
aller Ausprägungen im Bereich [Mittelwert +/- 1 • Standardabweichung] streuen
ungefähr 95,0 % (95,44 %)
aller Ausprägungen im Bereich [Mittelwert +/- 2 • Standardabweichung] streuen
ungefähr 99,8 % (99,73 %)
aller Ausprägungen im Bereich [Mittelwert +/- 3 • Standardabweichung] streuen.
Diese Wahrscheinlichkeit nennt man
Vertrauenswahrscheinlichkeit oder
statistische Sicherheit.
Das Intervall um den Stichprobenparameter nennt man Vertrauensbereich oder Konfidenzintervall.
Die nachfolgende Abbildung zeigt den dargestellten Zusammenhang:
Diese Erkenntnis der Gauss’schen Normalverteilung (bei einer großen Anzahl von Untersuchungseinheiten) macht man sich bei der statistischen Qualitätskontrolle zu Nutze: Man zieht eine zufällig entnommene Stichprobe aus der produzierten Losgröße und schließt (vereinfacht gesagt) von der Zahl der „schlechten Stücke in der Stichprobe auf die Zahl der schlechten Stücke in der Grundgesamtheit“ (gesamte Losgröße).
Wahrscheinlichkeitsnetz
Mit einem Wahrscheinlichkeitsnetz können die Daten eines statistischen Merkmals daraufhin untersucht werden, ob ihnen eine bestimmte Wahrscheinlichkeitsverteilung zugrunde liegt. Es ist mit einem Koordinatennetz versehen, in dem auf der y-Achse die Quantile (Lagemaße) der Verteilung in logarithmischer Form, dagegen auf der x-Achse die dazugehörigen Funktionswerte der Verteilung in linearisierter Form aufgetragen sind. Beim Eintragen der Wertepaare (Quantil, Verteilung) erhält man so eine Gerade.
Falls die eingetragenen Messwerte annähernd auf einer Geraden liegen (wie im nachfolgenden Beispiel), so kann davon ausgegangen werden, dass die Messwerte näherungsweise normalverteilt sind.
Es lässt sich aus dem Schnittpunkt der Ausgleichsgeraden mit der 50 %-Linie des Wahrscheinlichkeitsnetzes der Schätzwert für den arithmetischen Mittelwert
$$\bar{x}$$
ablesen. Im nachfolgenden Beispiel kann dieser Wert bei ca. 4,6 Jahren abgelesen werden. Dies bedeutet, dass die Hälfte der Bauteile vor oder bei 4,6 Jahren ausfällt, die andere Hälfte 4,6 Jahre oder länger hält.Ebenso kann aus dem Abstand vom Schnittpunkt der Ausgleichsgeraden und der 50 %-Linie zum Schnittpunkt der Ausgleichsgeraden und einer eingezeichneten Linie bei 15,87 % $$(\bar{x}-1s)$$ bzw. bei 84,13 % $$(\bar{x}+1s)$$ der Schätzwert der Standardabweichung s abgelesen werden.
Hinweis
In Prüfungsaufgaben wird häufig verlangt, dass Sie aus einem Wahrscheinlichkeitsnetz Werte herauslesen können, z. B. den arithmetischen Mittelwert $$\bar{x}$$ oder die Standardabweichung s. Ebenso könnte eine Frage z. B. lauten, wie viele Bauteile schon innerhalb der ersten vier Jahre ausfallen. Im Beispiel würde die Antwort ca. 17 % lauten. Denn der Schnittpunkt der Ausgleichsgeraden mit der 4-Jahres-Linie liegt bei ca. 17 % auf der vertikalen Achse, welche die Ausfallwahrscheinlichkeit angibt.
Wahrscheinlichkeitsnetz Normalverteilung
04. Welche (einfachen) Prüfmethoden werden außerdem in der Qualitätskontrolle eingesetzt?
Neben dem Verfahren der „Statistischen Qualitätskontrolle“ gibt es in der Betriebspraxis noch einfache und doch sehr wirkungsvolle Prüfverfahren; drei dieser Methoden werden hier beispielhaft genauer behandelt:
Strichliste
Kontrollkarte (QRK)
Stichprobenpläne.
Bei der Strichliste werden die Ergebnisse einer Prüfstichprobe auf einem Auswertungsblatt festgehalten: Dazu bildet man Messwertklassen und trägt pro Klasse ein, wie häufig ein bestimmter Messwert beobachtet wurde. Die Anzahl der Klassen sollte i. d. R. zwischen 5 und 20 liegen; die Klassenbreite ist gleich groß zu wählen.
Beispiel
Angenommen, wir befinden uns in der Fertigung von Ritzeln für Kfz-Anlasser. Der Sollwert des Ritzeldurchmessers soll bei 250 mm liegen. Aus einer Losgröße von 1.000 Einheiten wird eine Stichprobe von 40 Einheiten gezogen, die folgendes Ergebnis zeigt:
Strichliste Aufnahme am: 10..
Auftrag: 47333 Losgröße: 1.000 Werkstück: Ritzel Prüfmenge: 40 Messwertklassen (in mm) Häufigkeiten, absolut Häufigkeiten, in % ≤ 248,0 // 2 5,0 ≤ 248,5 // 2 5,0 ≤ 249,0 ///// 5 12,5 ≤ 249,5 ///// // 7 17,5 ≤ 250,0 ///// ///// // 12 30,0 ≤ 250,5 ///// / 6 15,0 ≤ 251,0 /// 3 7,5 ≤ 251,5 // 2 5,0 ≤ 252,0 / 1 2,5 ∑ 40 100,0 Die Auswertung der Strichliste erfolgt dann wiederum mithilfe der „Statistischen Qualitätskontrolle“.
Kontrollkarten (auch: Qualitätsregelkarten QRK bzw. kurz: Regelkarten; auch: „Statistische Prozessregelung“) werden in der industriellen Fertigung dafür benutzt, die Ergebnisse aufeinander folgender Prüfstichproben festzuhalten. Durch die Verwendung von Kontrollkarten lassen sich Veränderungen des Qualitätsstandards im Zeitablauf beobachten; z. B. kann frühzeitig erkannt werden, ob Toleranzen bestimmte Grenzwerte über- oder unterschreiten. Es gibt eine Vielzahl unterschiedlicher Qualitätsregelkarten (je nach Prüfmerkmal, Qualitätsanforderung und Messtechnik). Häufige Verwendung finden sog. zweispurige QRK, die gleichzeitig einen Lageparameter (Mittelwert oder Median) und einen Streuungsparameter (z. B. Standardabweichung oder Range) anzeigen (sog. $$\bar{x}/s$$-Regelkarte bzw. $$\bar{x}/R$$-Regelkarte).
Beispiel
Die nachfolgende Abbildung zeigt den Ausschnitt einer Kontrollkarte:
1. Der Fertigungsprozess ist sicher, wenn die Prüfwerte innerhalb der oberen und unteren Warngrenze liegen.
2. Werden die Warngrenzen überschritten, ist der Prozess „nicht mehr sicher“, aber „fähig“.
3. Werden die Eingriffgrenzen erreicht, muss der Prozess wieder sicher gemacht werden (z. B. neues Werkzeug, Neujustierung, Fehlerquelle beheben).
4. Erfolgt beim Erreichen der Eingriffsgrenzen keine Korrekturmaßnahme, so ist damit zu rechnen, dass es zur Produktion von „Nicht-in-Ordnung-Teilen“ (NIO-Teile) kommt.
05. Wie sind Regelkarten zu interpretieren?
Prozessverlauf
Grafische DarstellungBezeichnung
ErläuterungBewertung
MaßnahmenNatürlicher Verlauf 2/3 der Werte liegen innerhalb des Bereichs ± s; OEG bzw. UEG werden nicht überschritten. Prozess in Ordnung! Kein Eingriff erforderlich. Überschreiten der Grenzen
Die obere und/oder untere Eingriffsgrenze ist überschritten.Prozess nicht in Ordnung!
Eingriff erforderlich; Ursachen ermitteln.Run
Mehr als sechs Werte liegen in Folge über/unter M.Prozess noch in Ordnung!
Verschärfte Kontrolle; Verlauf deutet auf systematischen Fehler hin, z. B. Werkzeugverschleiß.Trend
Mehr als sechs Werte in Folge zeigen eine fallende/steigende Tendenz.Prozess nicht in Ordnung!
Eingriff erforderlich; Ursachen ermitteln, z. B. Verschleiß der Werkzeuge, Vorrichtungen, Messgeräte.Middle Third
15 oder mehr Werte liegen in Folge innerhalb von ± s (= im mittleren Drittel).Prozess in Ordnung!
Kein Eingriff erforderlich; aber: Ursachen für Prozessverbesserung ergründen bzw. Prüfergebnisse verstärkt kontrollieren.Perioden
Die Werte wechseln periodisch um den Wert M; es liegen mehr als 2/3 der Werte außerhalb des mittleren Drittels zwischen OEG und UEG.Prozess nicht in Ordnung!
Eingriff erforderlich; es ist ein systematischer Fehler zu vermuten.06. Wie wird der Fehleranteil im Prüflos und in der Grundgesamtheit berechnet?
Aus einem Losumfang (Grundgesamtheit) von N wird eine hinreichend große Stichprobe mit dem Umfang n zufällig entnommen. Man erhält in der Stichprobe nf fehlerhafte Stücke (= Überschreitung des zulässigen Toleranzbereichs):
Der Anteil der fehlerhaften Stücke Δxfder Stichprobe ist
$$\Delta\; x_{f} = \frac{n_{f}}{n}$$
oder in Prozent:$$= \frac{n_{f}}{n} \cdot 100$$
Beispiel
Es werden aus einem Losumfang von 4.000 Wellen 10 % überprüft. Die Messung ergibt 20 unbrauchbare Teile.
Es ergibt sich bei n = 400 und nf = 20
$$\Delta\; x_{f} = \frac{n_{f}}{n} $$
$$= \frac{20}{400} = 0,05\; bzw.\; 5 \%$$
Bei hinreichend großem Stichprobenumfang und zufällig entnommenen Messwerten kann angenommen werden, dass der Anteil der fehlerhaften Stücke in der Grundgesamtheit Nf wahrscheinlich dem Anteil in der Stichprobe entspricht (Schluss von der Stichprobe auf die Grundgesamtheit); es wird also gleichgesetzt:
$$\frac{n_{f}}{n} \cdot 100 = \frac{N_{f}}{N} \cdot 100$$
Das heißt, es kann angenommen werden, dass die Zahl der fehlerhaften Wellen in der Grundgesamtheit 200 Stück beträgt (5 % von 4.000).
Bezeichnet man die Anzahl der fehlerhaften Stücke als „NIO-Teile“ (= „Nicht-in-Ordnung-Teile“) so lässt sich in Worten folgender Schluss von der Stichprobe auf die Grundgesamtheit formulieren:
$$\frac{NIO-Teile der Stichprobe (\bar{x})}{Stichprobenumfang (n)}$$ → $$\frac{NIO-Teile der Grundgesamtheit (μ)}{Losumfang(N)}$$
Beispiel
$$\frac{\bar{x}}{n}=\frac{μ}{N}$$
$$\mu=\frac{\bar{x}}{\frac{n}{N}}=\frac{\bar{x}\cdot N}{n}=\frac{20}{\frac{400}{4000}}=\frac{20\cdot4000}{400}=200$$
Weitere interessante Inhalte zum Thema
-
Zur Bestimmung des Konfidenzintervalls und der richtigen Anwendung des Schemas
Vielleicht ist für Sie auch das Thema Zur Bestimmung des Konfidenzintervalls und der richtigen Anwendung des Schemas (Schätzen) aus unserem Online-Kurs Stichprobentheorie interessant.