wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Häufigkeitsverteilungen > Unklassierte Daten und ihre Darstellung:

Relative Häufigkeit

WebinarTerminankündigung:
 Am 19.01.2017 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Statistik: Konfidenzintervalle und Testtheorie
- In diesem 60-minütigen Gratis-Webinar gibt Daniel Lambert einen Überblick über die Stichprobentheorie: was sind Konfidenzintervalle, wie testet man?
[weitere Informationen] [Terminübersicht]

Man kann statt der absoluten auch die Relative Häufigkeit $\ f(a_j) $ oder kurz $\ f_j $ beobachten. Diese ergibt sich dadurch, dass wir die absolute Häufigkeit $\ h(a_j) $ durch die Anzahl der Beobachtungen n teilen:
$\ f(a_j)={{1 \over n} \cdot h(a_j)} $ Relative Häufigkeit.
Die relative Häufigkeit $\ f(a_j) $ gibt uns den Anteil einer Ausprägung aller Beobachtungen an. Für das o.e. Beispiel erhält man folgende relative Häufigkeiten:

$\ a_i $ 1 2 3 4 5
$\ f(a_i)    $ $\ {2 \over 20} $ $\ {3 \over 20} $ $\ {2 \over 20} $ $\ {6 \over 20} $ $\ {7 \over 20} $

Die Note 1 wurde demnach von zwei von den 20 Studenten bzw. von $\ {2 \over 20} \cdot 100% = 10% $ der Studenten geschrieben. Die Summe der relativen Häufigkeiten muss gleich 1 sein, d.h. $\ \sum f(a_j) = 1 $, da hier alle Beobachtungen (also 100 %) enthalten sind.

Merke

Merke:
• Die Summe der absoluten Häufigkeiten $\ h(a_j) $ ist gleich dem Umfang der Erhebung, d.h. $\ \sum h(a_j) = n $.
• Die Summe der relativen Häufigkeiten $\ f(a_j) $ ist gleich 1, d.h. $\ \sum f(a_j) = 1 $. Relative Häufigkeiten können auch als Prozentwerte angegeben werden ($\ f(a_j) \cdot 100 % $). Im obigen Beispiel bedeutet dies, dass genau 10 % der Studenten eine „Eins“ oder 30 % eine „Vier“ geschrieben haben. Nicht zu verwechseln mit der Interpretation in der Wahrscheinlichkeitsrechnung. Wir dürfen nicht behaupten, dass mit einer Wahrscheinlichkeit von 10 % eine Eins geschrieben wird! Wir haben es hier mit tatsächlichen Beobachtungen zu tun und wollen (noch) keine Vorhersagen über die Zukunft tätigen.

Darstellung der absoluten und der relativen Häufigkeit

Zusammenfassend können wir nun sowohl die absoluten als auch die relativen Häufigkeiten sowie die Summen von beiden übersichtlich in einer Tabelle darstellen. Dies ist die gebräuchlichste Darstellung, wir werden sie in Zukunft immer wieder verwenden.

$\ a_i $ 1 2 3 4 5 $\ \sum $
$\ h(a_j)  $ 2 3 2 6 7 20
$\ f(a_j)  $ $\ {2 \over 20} $ $\ {3 \over 20} $ $\ {2 \over 20} $ $\ {6 \over 20} $ $\ {7 \over 20} $ 1
Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Zur Urliste 3,4,3,3,6,2,3,1 liegt die relative Häufigkeit des Wertes 3 bei %.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Relative Häufigkeit ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen