wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Verteilungsmaße > Formmaße:

Wölbung

WebinarTerminankündigung:
 Am 08.12.2016 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Diskrete und stetige Verteilungen in der Wahrscheinlichkeitsrechnung
- In diesem 60-minütigen Gratis-Webinar gehen wir darauf ein, welche diskreten und stetigen Verteilungen Sie in der Prüfung beherrschen müssen.
[weitere Informationen] [Terminübersicht]

Die Wölbung einer Verteilung behandelt die Frage, wie spitz oder flach eine Verteilung ist – genauer: inwieweit die Merkmalswerte in der Mitte oder an den Enden der Verteilung sich konzentrieren. So haben z.B. die Kurven der beiden u.e. Verteilungen unterschiedliche Wölbungen, in der folgenden Abbildung ist die helle Verteilung stärker gewölbt (also spitzer) als die dunkle (die weniger gewölbt und also flacher ist).

Zwei unterschiedlich gewölbte Verteilungen
Zwei unterschiedlich gewölbte Verteilungen

Berechnung der Wölbung

Maßzahlen für die Wölbung sind das

  • Momentenwölbungsmaß und das
  • Quartilswölbungsmaß.

Das Momentenwölbungsmaß $\ w_M $ ist definiert als
$$\ w_M = {m_4 \overline x \over {n \cdot s^4}}- 3 = {\sum_{i=1}^n (x_i- \overline x)^4 \over (\sum_{i=1}^n (x_i- \overline x)^2)^2} -3 $$
Hier ist für die Zahlen aus der Aufgabe mit den Bearbeitungszeiten der Statistik-Klausuren $\ w_M = {(1-7)^4+(2-7)^4+...+(12-7)^4) \over [(1-7)^2+(2-7)^2+...+(12-7)^2 ]^2} -3= - 2,909 $.

Es gilt die Regel:

  •  $\ w_M < 0 $ bedeutet, dass die Verteilung flacher ist als die Glockenkurve der Normalverteilung,
  • $\ w_M > 0 $ heißt, dass die Verteilung spitzer ist als jene der Glockenkurve der Normalverteilung

Merke

Merke: Die Kennzahl $\ w_M $ liegt im Bereich zwischen –2 und +  $\ \infty $, also $\ –2 < w_M < + \infty $.

Das Quartilswölbungsmaß $\ w_Q $ bezeichnet man durch $$\ w_Q= {1-(x_{0,75}-x_{0,25}) \over x_{0,8}-x_{0,2}} $$ Für das vorliegende Beispiel erhält man $\ w_Q = {1 -(9-3) \over (10-2)}= 0,25 $.

Merke

Merke:

  • Das Quartilswölbungsmaß liegt zwischen 0 und 1: $\ 0 \leq w_q \leq 1 $
  • Für die Normalverteilung ist $\ w_Q $ ca. bei 0,2, diese Zahl wird als Referenzwert benutzt.

Damit entwickelt man als Regel: Wenn $\ w_Q $ größer als 0,2 ausfällt, dann ist die zugrunde liegende Verteilung stärker gewölbt als jene der Normalverteilung – andernfalls ist sie flacher. Der Quartilsabstand $\ x_{0,75} – x_{0,25} $ und der Quintilsabstand $\ x_{0,8} – x_{0,2} $ liegen enger beieinander, wenn die Enden der Verteilung stärker besetzt sind.

Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Wenn das Momentenwölbungsmaß ist als null, dann bedeutet dies, dass die Verteilung flacher ist als die Glockenkurve der Normalverteilung.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Kommentare zum Thema: Wölbung

  • Sven Hoberock schrieb am 12.03.2015 um 18:30 Uhr
    Hallo Frau Manes, mein Kollege hatte Ihnen auch direkt noch am gleichen Tag eine Antwort per eMail gesendet. Hatten Sie diese Mail nicht erhalten? Gerne aber auch an dieser Stelle nochmal folgender Hinweis: Unsere Multiple-Choice-Aufgaben werden wie folgt ausgewertet: Wenn Sie eine Antwortoption ZU RECHT ausgewählt haben oder aber ZU RECHT nicht ausgewählt haben, dann wird diese Antwortoption in der Auflösung grün markiert - hier haben Sie also alles richtig gemacht. Grün bedeutet also nur, dass das Kreuzchen richtig GESETZT oder WEGGELASSEN wurde. Grün bedeutet nicht, dass der Inhalt der Antwortoption zutreffend ist. Zusätzlich schreiben wir in der Auflösung noch ANZUKREUZENDE ANTWORT hinter die Antwortoptionen, die eigentlich hätten ausgewählt werden müssen - ganz unabhängig davon, ob Sie sie ausgewählt hatten (dann zusätzlich grün) oder nicht (dann zusätzlich rot). Ich hoffe, dass dieser Hinweis eventuelle Missverständnisse beheben konnte. Viele Grüße
  • Franziska Manes schrieb am 12.03.2015 um 14:08 Uhr
    Hallo. Ich hatte schon vor 2 Tagen eine Email geschrieben, dass die Lösungen in den Aufgaben zur Wölbung ( "Das Quartilswölbungsmaß ist unbeschränkt, das Momentenwölbungsmaß ist beschränkt" vs. "Das Q. ist beschränkt, das M. nicht" ) nicht stimmen können. Ich komme in dem Aufgabenbereich einfach nicht weiter, weil mir immer die falsche Antwort gewertet wird. Mal ist das eine richtig, mal das andere. Da stimmt was nicht. Gleiches gilt für die Aufgabe mit den Brokern und der Schiefe. Es ist klar dass die Verteilung linkssteil oder rechtsschief ist. Nur es ist egal welches ich ankreuze, es wird immer falsch gewertet. Das ist ziemlich ärgerlich, weil man einfach nicht weiter lernen kann, wenn man die zu erreichende Punktzahl nicht bekommt.
Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Wölbung ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen