wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Zusammenhangsmaße > Zusammenhangsmaße auf Nominal- und Ordinalskala:

Korrelationsanalyse

WebinarTerminankündigung:
 Am 08.12.2016 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Diskrete und stetige Verteilungen in der Wahrscheinlichkeitsrechnung
- In diesem 60-minütigen Gratis-Webinar gehen wir darauf ein, welche diskreten und stetigen Verteilungen Sie in der Prüfung beherrschen müssen.
[weitere Informationen] [Terminübersicht]

Im vorliegenden Kapitel wird die Abhängigkeit zweier Merkmale untersucht. Die Vorgehensweise nennt man auch Korrelationsrechung (= Korrelationsanalyse). Das Skalenniveau ist hierbei äußerst wichtig, wir unterscheiden im Folgenden:

  • Kontingenzmaße für nominalskalierte Merkmale
    • φ- Koeffizient
    • Kontingenzkoeffizient nach Pearson
    • korrigierter Koeffizient nach Pearson
    • Kontingenzkoeffizient nach Cramér
  • Rangkorrelationsmaße für ordinalskalierte Daten
  • Korrelationskoeffizienten für metrische Skalen

Interpretation des Zusammenhanges

Grundsätzlich gilt, dass man zwei Dinge unterscheiden möchte, nämlich:

  • die Richtung und
  • die Stärke

des linearen Zusammenhanges zwischen zwei Merkmalen (was allerdings erst ab den Ordinalskalen möglich ist).

Beispiele zur Richtung des Zusammenhanges

Mit der „Richtung” des Zusammenhanges soll ausgedrückt werden, ob sich die beiden Merkmale

  • gleichgerichtet (positiver Korrelationskoeffizient) oder
  • entgegengerichtet (negativer Korrelationskoeffizient) bewegen.

Beispiel

Beispiel 50 - Negativer Korrelationskoeffizient:
Wenn z.B. der Preis eines Gutes steigt, bewegt sich i.A. (wenn man von preisunabhängigen- und Giffen-Gütern absieht) die nachgefragte Menge nach unten. Es liegt also ein entgegen gerichteter Zusammenhang vor, der Korrelationskoeffizient wäre negativ.

Beispiel

Beispiel 51 - Positiver Korrelationskoeffizient:
Wenn die Anzahl der BWL-Studenten der Universität Münster steigt, dann müssen die Assistenten der Professoren mehr Klausuren korrigieren als vorher. Der Zusammenhang zwischen der Anzahl der Studenten und der Korrekturzeit ist gleich gerichtet, der Korrelationskoeffizient entsprechend positiv.

Beispiele zur Stärke des Zusammenhanges

Bei der Stärke des Zusammenhanges ist die Fragestellung eine andere, nämlich ob die Veränderung des einen Merkmals eine deutliche Veränderung des anderen Merkmals bewirkt (bei einem starken Zusammenhang) oder nicht (bei einem schwachen Zusammenhang).

„Stark” bedeutet bei dem Korrelationskoeffizienten nach Spearman und Bravais-Pearson, dass die Werte nah bei + 1 oder -1 liegen, „schwach” hingegen ist der lineare Zusammenhang, wenn der jeweilige Korrelationskoeffizient nahe bei 0 liegt (auch zwischen -0,5 und +0,5 gilt der Zusammenhang noch als sehr schwach).
Zu beachten ist außerdem, dass wir hier nur einen statistischen, d.h. formalen Zusammenhang beschreiben bzw. erkennen können. Ob dieser auch kausal richtig ist, kann oft der Statistiker nicht sagen, sondern muss vom jeweiligen Fachmann (Mediziner, Ökonomen, Psychologen, etc.) untersucht werden.

Beispiel

Beispiel  52 - Statistischer Zusammenhang:
Eine altbekannte Frage: Fördert rauchen den Lungenkrebs? Der Statistiker kann (formal) untersuchen, ob die relative Häufigkeit, an Lungenkrebs zu erkranken, bei Rauchern höher ist als bei Nichtrauchern. Wenn die Antwort „Ja” lauten sollte, dann heißt dies noch lange nicht, dass der kausale Zusammenhang damit geklärt ist. Vielmehr müssen Mediziner diese Frage entscheiden. Es könnte nämlich z.B. sein, dass die Raucher eher durch andere Umwelteinflüsse an Lungenkrebs erkranken und deswegen die statistische Untersuchung verfälscht war.

Zwei weitere Probleme gibt es in diesem Zusammenhang, die eine Korrelation vortäuschen, obwohl sie aus anderen Gründen oder obwohl sie gar nicht besteht:

  • Scheinkorrelation,
  • Nonsenskorrelation.

Bei der Scheinkorrelation besteht ein Zusammenhang zwischen zwei Merkmalen nur deswegen, weil eine dritte Größe dahinter steht und beide beeinflusst.

Beispiel

Beispiel  53 - Scheinkorrelation:
Student Max erzielt in VWL eine 1,3 und in Recht eine 2,0.
Es existiert ein Zusammenhang zwischen den beiden guten Ergebnissen nur insofern, als dass eine dritte Größe, nämlich der Lernaufwand, dahinter steht.

Beispiel

Beispiel  54 - Scheinkorrelation:
Sonnenflecken und konjunkturelle Entwicklung in Westeuropa.
Als vor 200 Jahren die Gesellschaft noch sehr stark landwirtschaftlich geprägt war, sorgten Flecken auf der Sonne für schlechteres Wetter auf der Erde, dieses für Ernteausfälle und dieses wiederum für einen konjunkturellen Rückgang. Eine dritte Größe, nämlich das Wetter, sorgte also für diese Scheinkorrelation. Bei der Nonsenskorrelation hingegen lässt sich für einen (angeblichen) Zusammenhang gar keine kausale Begründung finden.

Beispiel

Beispiel 55 - Nonsenskorrelation:
In Upsala wurde die Anzahl der Störche und die Geburten über mehrere Jahre gezählt. Hierbei stellte man fest, dass in Monaten mit vielen Störchen auch viele Entbindungen stattfanden. Es wurde demnach „bewiesen”, dass der Klapperstorch die Kinder bringt.

Eine Aussage, die natürlich völlig falsch ist, schon der Aufwand, zu diesem Zweck die Daten zu erheben und einen Zusammenhang zu ermitteln war völlig sinn- und zwecklos. Bevor etwas miteinander korreliert wird, sollte überprüft werden, ob ein kausaler Zusammenhang überhaupt bestehen kann.

Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Mit der Richtung des Zusammenhanges soll ausgedrückt werden, ob sich Merkmale gleichgerichtet (positiver Korrelationskoeffizient) oder (negativer Korrelationskoeffizient) bewegen.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Kommentare zum Thema: Korrelationsanalyse

  • Maren Nebeling schrieb am 01.10.2014 um 11:31 Uhr
    Hallo, vielen Dank für den Hinweis. Ich habe diese Antwortmöglichkeit nun ergänzt. Schöne Grüße.
  • Fabian Geffers schrieb am 27.09.2014 um 15:36 Uhr
    Aufgabe: "Lückentext Mit der Richtung des Zusammenhanges soll ausgedrückt werden, ob sich Merkmale gleichgerichtet (positiver Korrelationskoeffizient) oder [Lücke] (negativer Korrelationskoeffizient) bewegen". 'Entgegengesetzt' könnte ruhig als Synonym für entgegengerichtet gelten... lg fg
Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Korrelationsanalyse ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen