wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse

Skalentransformation auf der Ordinalskala

WebinarTerminankündigung:
 Am 08.12.2016 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Diskrete und stetige Verteilungen in der Wahrscheinlichkeitsrechnung
- In diesem 60-minütigen Gratis-Webinar gehen wir darauf ein, welche diskreten und stetigen Verteilungen Sie in der Prüfung beherrschen müssen.
[weitere Informationen] [Terminübersicht]

Wir hatten ebenfalls schon festgestellt, dass sich die ordinal klassierten KlausurNoten „sehr gut” bis „ungenügend” transformieren lassen nach „1” bis „6”. Eine andere Möglichkeit existiert in der Schweiz (und vor dem zweiten Weltkrieg auch in Deutschland), wo ein „sehr gut” einer „6” bis hin zu „ungenügend” einer „1” entspricht. Man merkt hier, dass die Skalentransformationen eineindeutig ist, denn man kann hin- und zurückschließen. Zusätzlich wird aber auch die Reihenfolge eingehalten. Die Merkmalsausprägungen sehr gut, gut,..., ungenügend sind in derselben Reihenfolge angeordnet wie die Zahlen 1, 2,...,6 bzw. 6, 5,...,1 in der Schweiz.
Die Skalentransformation auf der Ordinalskala ist also eineindeutig und streng monoton, d.h. die Reihenfolge wird jeweils eingehalten.

Beispiel Skalentransformation

Das Wort „jeweils” ist sehr wichtig. Die Einhaltung der Reihenfolge bzw. der strengen Monotonie kann also auch bedeuten, dass die Reihenfolge genau verdreht wird, d.h. aus Klein wird Groß und aus Groß wird Klein:

Leistung Note D Note CH
sehr gut 1 6
gut 2 5
befriedigend 3 4
ausreichend 4 3
mangelhaft 5 2
ungenügend 6 1

Man weiß aber, dass die deutsche Note 3 an der dritten Stelle steht und die Schweizer Note 4 deshalb auch an der dritten Stelle, genauso die deutsche Note 6 an der letzten Stelle, so wie die Schweizer Note 1. „Streng monoton” heißt also lediglich, dass die Reihenfolge für sich, also jeweils, beibehalten wird.

Durch die Skalentransformation der Schulnoten sehr gut, gut, befriedigend,... auf die Zahlen 1,2,3,... könnte man auf die Idee kommen, man dürfte mit diesen Noten rechnen wie mit Zahlen (z.B. als Mittelwert der Notenverteilung 1,2,3,3,6 die Note (1 + 2 + 3 + 3 + 6):5 = 3). Dies ist aber falsch, da man dies bei den eigentlich dahinterstehenden Noten nicht kann: „sehr gut + gut“ lässt sich nicht ausrechnen. Der geeignete Mittelwert ist daher auch nicht das arithmetische Mittel, sondern, wie später noch gezeigt wird, der sog. Median. Statistisch gesehen ist also die Berechnung des Notendurchschnitts, wie es in der Schule oder im Studium gemacht wird, falsch.

Hinweis:
Beachte, dass dies trotzdem „überall“ gemacht wird. Auch Prüfungsämter von Universitäten ordnen den Noten der Studenten Zahlen zu (aus „sehr gut“ wird „1“, aus „gut“ wird „2“ etc.) und berechnen hieraus als Durchschnittsnote das arithmetische Mittel.

Video zur Skalentransformation auf der Ordinalskala

Schauen wir uns nun ein Video zur Skalentransformation auf der Ordinalskala an:

Video: Skalentransformation auf der Ordinalskala

Skalentransformation einer Ordinalskala sollte eineindeutig und streng monoton sein.
Multiple-Choice
Welche der folgenden Aussagen zu Skalentransformationen auf der Ordinalskala ist richtig?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Kommentare zum Thema: Skalentransformation auf der Ordinalskala

  • Maren Nebeling schrieb am 21.07.2014 um 11:12 Uhr
    Hallo. Die Lückentext-Aufgabe ist eher allgemein gehalten. Daher haben wir "Monotonie" als Antwort gewählt. Natürlich wäre auch strenge Monotonie nicht falsch, jedoch wäre dies spezieller. Schöne Grüße.
  • Eugen Fritzler schrieb am 19.07.2014 um 12:20 Uhr
    Warum ist hier strenge Monotonie falsch?
Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Skalentransformation auf der Ordinalskala ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen