wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Verteilungsmaße > Lagemaße:

Harmonisches Mittel

WebinarTerminankündigung:
 Am 19.01.2017 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Statistik: Konfidenzintervalle und Testtheorie
- In diesem 60-minütigen Gratis-Webinar gibt Daniel Lambert einen Überblick über die Stichprobentheorie: was sind Konfidenzintervalle, wie testet man?
[weitere Informationen] [Terminübersicht]

Wenn die Merkmalswerte aus Brüchen bestehen, von denen entweder der Zähler oder der Nenner nicht gegeben sind, so verwendet man das harmonische Mittel. Dazu folgende Beispiele.

Beispiele zum harmonischen Mittel

Beispiel 40

Der Student D fährt mit seinem neuen Auto eines namhaften süddeutschen Autobauers die folgenden Strecken mit den erwähnten Geschwindigkeiten:

Strecke 1 2 3 4
Distanz 100 km 140 km 50 km 150 km
Geschwindigkeit 50 km/h 100 km/h 80 km/h 150 km/h

Wie lange hat er insgesamt gebraucht? Mit welcher Durchschnittsgeschwindigkeit ist er insgesamt gefahren?
Der Begriff Geschwindigkeit ist definiert als Weg s pro Zeit t, d.h. in Buchstaben $\ v = {s \over t} $ . Man errechnet, dass der Student D folgende Zeiten auf den einzelnen Strecken benötigt hat:

Strecke 1 2 3 4
Zeit 2 h 1,4 h 0,625 h 1 h

So ist er z.B. auf Strecke 2 die Distanz von 140 km mit 100 km/h gefahren, hat also
$\ {140km \over 100km/h} = 1,4kmh/km = 1,4h $
benötigt. Insgesamt war er also 5,025 h unterwegs. Bezogen auf eine Distanz von 440 km bedeutet dies, dass er eine Durchschnittsgeschwindigkeit von $\ {440km \over 5,025h} =87,56 $ km/h hatte.

Beispiel 41

Besagter Student gibt nun lediglich an, wie lange er für die einzelnen Strecken brauchte und mit welcher Geschwindigkeit er fuhr, nicht aber, wie lange die Distanz war:

Strecke 5 6 7 8
Zeit 1,5 h 2 h 1 h 0,6 h
Geschwindigkeit 120 km/h 100 km/h 80 km/h 110 km/h

Welche Strecke ist er insgesamt gefahren? Mit welcher Durchschnittsgeschwindigkeit fuhr er?
Wir berechnen zunächst die Distanzen der einzelnen Strecken, so ist z.B. der Weg 8 insgesamt $\ {110 km/h \cdot 0,6h} = 66 $ km lang.

Strecke

5

6

7

8

Distanz

180 km

200 km

80 km

66 km

Insgesamt fuhr der Student also 526 km in einer Zeit von 5,1 Stunden. Das ergibt eine Durchschnittsgeschwindigkeit von $\ \overline v = {526 \over 5,1} = 103,137 $ km/h.

Formel harmonisches Mittel

Wenn man also das Mittel aus Brüchen $\ {a_i \over b_i} $ ausrechnen möchte, ist die direkte Methode, den gesamten Zähler und den gesamten Nenner zu berechnen, durch die Formel Mittelwert bei „direkter Methode“
$$\ \overline v ={\sum_{i=1}^n a_i \over \sum_{i=1}^n b_i} $$
gegeben. Genau dies haben wir gemacht. Im ersten Beispiel waren die Nenner $\ b_i $, nämlich die Zeiten, nicht gegeben, im zweiten Beispiel waren die Zähler $\ a_i $ unbekannt, nämlich die Distanzen. Beide wurden zunächst berechnet, um dann den Mittelwert zu berechnen. Es gibt aber auch eine indirekte Methode, mit der nicht zunächst Zähler oder Nenner ausgerechnet werden müssen, diese Methode nennen wir harmonisches Mittel $\ \overline x _h $.

Mittelwerte bei Brüchen:
Gegeben seien die Beziehungszahlen $\ x_i ={a_i \over b_i} $.
Wir berechnen das Mittel aus diesen Werten

  • wenn die einzelnen Nenner $\ b_i $ unbekannt sind durch: $$\ \overline x_h= { \sum_{i=1}^n a_i \over \sum_{i=1}^n {a_i \over x_i}} $$
  • wenn die einzelnen Zähler $\ a_i $ unbekannt sind durch: $$\ \overline x_h={\sum_{i=1}^n x_i \cdot b_i \over \sum_{i=1}^n b_i} $$

Angewendet auf die o.e. Beispiele errechnet man für das Beispiel 40:
$$\ \begin{align} \overline x_h & ={(100km+140km+50km+150km) \over {100km \over 50 km/h} + {140km \over 100 km/h} + {50km \over 80 km/h}+ {150km \over 150 km/h}} \\ & = {440km \over (2h+1,4h+0,625h+1h)} \\ & = {440km \over 5,025h} \\ & = 87,562 km/h \end{align} $$ und für das Beispiel 41:
$$\ \begin{align} \overline x_h & ={{120km/h \cdot 1,5h} + {100km/h \cdot 2h}+{80km/h \cdot 1h}+{110km/h \cdot 0,6h} \over (1,5h+2h+1h+0,6h)} \\ & = {180km+200km+80km+66km) \over 5,1h} \\ & ={526km \over 5,1h} =103,137 km/h \end{align} $$ Durch das ausführliche Aufschreiben sieht man, dass die indirekte Methode, nämlich das Rechnen mit dem harmonischen Mittel, in Wahrheit nichts anderes ist als die direkte, nämlich das Ausrechnen entweder des Zählers oder des Nenners.
Oftmals schreibt man die Formel für das harmonische Mittel folgendermaßen: $$\ \overline x_H= {n \over \sum_{i=1}^k {m_i \over x_i}} $$ bzw. $$\ \overline x_H= {1 \over \sum_{i=1}^k {h_i \over x_i}} $$ Hierbei sind die xi die o.g. Beziehungszahlen, also z.B. die Geschwindigkeitsangaben. Die linke Formel entspricht exakt Methode 1, nämlich das Ausrechnen eines Mittelwertes bei bekanntem Zähler ai, aber unbekanntem Nenner $\ N_i $ . Wenn man hierbei durch n kürzt, erhält man den rechten Ausdruck. Der Parameter $\ h_i $ ist also $\ h_i = {n_i \over n} $ und gibt den jeweiligen Anteil an.
Im Beispiel 1 ist z.B. $\ n = n_1 + n_2 + n_3 + n_4 = 100 + 140 + 5 + 150 = 395 $ [km] und es gilt $\ h_1 = {100 \over 440}= 0,2273,\ h_2 = {140 \over 440}= 0,3182,\ h_3 = 0,1136,\ h_4=0,3409 $. Damit rechnet man das harmonische Mittel aus als $$\ \overline x_H= {1 \over \sum_{i=1}^k {h_i \over x_i}}= {1 \over {0,2273 \over 50}{0,3182 \over 100}{0,1136 \over 80}{0,3404 \over 150}}={1 \over 0,0114} =87,56km/h $$
also genau das gleiche Ergebnis wie oben errechnet.

Mittelwerte und Skalenniveau

Merke

Merke: Für die Anwendbarkeit des richtigen Mittelwertes ist es entscheidend, wie die Merkmalswerte skaliert sind. Für die einzelnen Skalen listet die folgende Tabelle die passenden Mittelwerte auf.
Skala Lageparameter
Nominalskala Modus
Ordinalskala Median
Intervallskala arithmetisches Mittel
Verhältnisskala geometrisches Mittel
Multiple-Choice
Gegeben seien die Zahlen 1,2,3 und 4. Dann lautet das harmonische Mittel dieser Zahlen
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Kommentare zum Thema: Harmonisches Mittel

  • Daniel Lambert schrieb am 10.01.2015 um 00:40 Uhr
    Hi Maximilian. Ja, ich gebe Dir Recht. ,)
  • Maximilian Mähr schrieb am 06.01.2015 um 22:09 Uhr
    Müsste bei der Frage nach dem harmonischen Mittel der Zahlen im Zähler nicht eine 4 stehen? Dann würde 1,92 das richtige Ergebnis sein.
  • Maren Nebeling schrieb am 30.09.2014 um 16:03 Uhr
    Hallo Fabian, vielen Dank für deinen Hinweis. Ich werde den Text verbessern. Leider kann ich die Beispiele nicht besonders darstellen (gelber Kasten), da das System nicht erlaubt Tabellen in diesen Kästen darzustellen. Ich hoffe die Unterteilung in Unterüberschriften genügt. Schöne Grüße.
  • Fabian Geffers schrieb am 26.09.2014 um 22:12 Uhr
    2 Weitere Fehler: Beispiel 40: 440/5,025 = ca. 87,56 und nicht 87,556 Und dann Aufgabe "Gegeben seien die Zahlen 1,2,3 und 4. Dann lautet das harmonische Mittel dieser Zahlen"... Das Ergebnis soll angeblich 0,48 sein. Rechne ich allerdings 4/((1/1)+(1/2)+1/3)+1/4)) = 48/52 = 1,92 (Nachweis: http://www.wolframalpha.com/input/?i=harmonic+mean+%281%2C2%2C3%2C4%29 )
  • Fabian Geffers schrieb am 26.09.2014 um 21:35 Uhr
    Kleiner optischer Hinweis: Die Beispiele auf dieser Seite sind nicht in dem Format (Gelber Kasten) angelegt, wie dies normalerweise der Fall ist. lg fg
  • Maren Nebeling schrieb am 14.07.2014 um 15:41 Uhr
    Hallo, ich habe diesen Fehler nun behoben. Natürlich lautet die richtige Antwort Verhältnisskala. Vielen Dank für den Hinweis. Schöne Grüße.
  • Breithaupt schrieb am 12.07.2014 um 18:57 Uhr
    Wieso ist denn die Antwort im Lückentext Kardinalskalen? Im Text oben steht doch bei den verschiedenen Kardinalskalen auch verschiedene Lageparameter. Und bei der Verhältnisskala das geometrische Mittel
  • Maren Nebeling schrieb am 06.02.2014 um 13:37 Uhr
    Hallo Thomas. Auch diesen kleinen Tippfehler habe ich behoben. Erneut vielen Dank und viele Grüße.
  • Thomas Ingenhorst schrieb am 06.02.2014 um 10:26 Uhr
    Der nächste Fehler ist in der Berechnung von n. Hier wurde 5 statt 50 addiert. Bei der nachfolgenden Rechnung wurde dann allerdings der richtige Wert (440) benutzt.
Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Harmonisches Mittel ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen