wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Deskriptive Statistik
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Zusammenhangsmaße > Zusammenhangsmaße auf metrischen Skalen:

Bravais-Pearsonscher Korrelationskoeffizient

WebinarTerminankündigung:
 Am 08.12.2016 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Diskrete und stetige Verteilungen in der Wahrscheinlichkeitsrechnung
- In diesem 60-minütigen Gratis-Webinar gehen wir darauf ein, welche diskreten und stetigen Verteilungen Sie in der Prüfung beherrschen müssen.
[weitere Informationen] [Terminübersicht]

An einem Beispiel wird der Bravais-Pearsonsche Korrelationskoeffizient erklärt.

Beispiel

Beispiel 57:
Es seien folgende Werte zweier Variablen X und Y gegeben:

Y X
2 4
3 1
4 0
3 3

Berechne den Bravais-Pearsonschen Korrelationskoeffizienten.

Berechnung Korrelationskoeffizient nach Bravais-Pearson

Bravais-Pearsonscher Korrelationskoeffizient - Schema:

  1. Urliste von X und Y bestimmen.
  2. Arithmetische Mittel $\ \overline x = {1 \over n} \sum_{i=1}^n x_i $ und $\ \overline y = {1 \over n} \sum_{i=1}^n y_i $ ausrechnen.
  3. Differenz der Werte vom jeweiligen arithmetischen Mittel bilden, d.h. und ausrechnen.
  4. Differenzen quadrieren, also $\ (x_i - \overline x)^2 $ und $\ (y_i - \overline y)^2 $berechnen.
  5. Produkt der Abweichungen ermitteln, also $\ (x_i - \overline x)(y_i - \overline y) $ .
  6. Summe der Zahlen aus Schritt 4 und 5 ermitteln, nämlich $$\ \sum_{i=1}^n (x_i - \overline x)^2 $$ $$\ \sum_{i=1}^n (y_i- \overline y)^2 $$ und $$\ \sum_{i=1}^n (x_i- \overline x) (y_i- \overline y) $$
  7. Einsetzen in die Formel $$\ r_{BP}={ \sum_{i=1}^n (x_i- \overline x)(y_i- \overline y) \over \sqrt {\sum{i=1}^n (x_i- \overline x)^2 \cdot \sum_{i=1}^n (y_i- \overline y)^2}} $$

Für das o.e. Beispiel 57 rechnet man die einzelnen Schritte einfach in einer Arbeitstabelle durch.

Schritt 1 Schritt 3 Schritt 4 Schritt 5
i $\ y_i $ $\ x_i $ $\ y_i- \overline y $ $\ x_i- \overline x $ $\ (y_i - \overline y)^2 $ $\ (x_i - \overline x)^2 $ $\ (x_i – \overline x)(y_i - \overline y) $
               
1 2 4 -1 2 1 4 -2
2 3 1 0 -1 0 1 0
3 4 0 1 -2 1 4 -2
4 3 3 0 1 0 1 0
        Schritt 6 $\ \sum $= 2 $ \sum $ = 10 $\ \sum $ = -4

Es ist $\ \overline x = {4 + 1 + 0 + 3 \over 4} = {8 \over 4} = 2 $ und $\ \overline y ={2 + 3 + 4 + 3 \over 4} = {12 \over 4} = 3 $. Der Korrelationskoeffizient nach Bravais-Pearson lautet demnach

$$\ r_{BP}={ \sum_{i=1}^n (x_i- \overline x)(y_i- \overline y) \over \sqrt {\sum_{i=1}^n (x_i- \overline x)^2 \cdot \sum_{i=1}^n (y_i- \overline y)^2}} ={ -4 \over \sqrt {10 \cdot 2}}=-0,8944 $$
Da $\ r_{BP} $ zwischen –1 und + 1 liegt, liegt mit – 0,8944 ein recht starker Zusammenhang vor.

Merke

Merke:
Der Korrelationskoeffizient nach Bravais-Pearson misst nur lineare Zusammenhänge zwischen zwei Größen. Wenn also rBP nahe bei 0 liegt, so heißt dies lediglich, dass kaum ein linearer Zusammenhang vorliegt. Es könnte aber sehr wohl ein nichtlinearer existieren, so z.B. ein exponentieller Zusammenhang. Dies heißt, dass aus der Unkorreliertheit nicht die Unabhängigkeit folgt!

Darstellung im Streuungsdiagramm

Die Extremfälle für $\ r_{BP} $ lassen sich am Streuungsdiagramm darstellen.

$\ r_{BP} $ = 1 heißt, dass die Punkte des Streudiagramms exakt auf einer positiv geneigten Geraden liegen,

Exakt positiv korreliert
Exakt positiv korreliert

$\ r_{BP} $ = -1 liegen die Punkte exakt auf einer negativ geneigten Geraden.

Exakt negativ korreliert
Exakt negativ korreliert

Wenn $\ r_{BP} $ nahe bei +1 liegt, dann ist der Grund hierfür, dass die einzelnen Punkte fast auf einer – positiv geneigten – Geraden liegen,

Hoch positiv korreliert
Hoch positiv korreliert

$\ r_{BP} $ nahe bei – 1 bedeutet, dass die Punkte fast auf einer – negativ geneigten – Geraden liegen

Stark negativ korreliert
Stark negativ korreliert

Video zum Korrelationskoeffizient nach Bravais-Pearson

Schauen wir uns nun das Thema in einem Lernvideo an:

Video: Bravais-Pearsonscher Korrelationskoeffizient

Der Korrelationskoeffizient nach Bravais-Pearson misst lineare Zusammenhänge zwischen zwei Größen. Der Bravais-Pearsonsche Korrelationskoeffizient wird bei metrische skalierten Werten verwendet.
Multiple-Choice
Welche der folgenden Aussagen zum Bravais-Pearsonschen Korrelationskoeffizienten kommt der Wahrheit am nächsten?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Daniel Lambert

Autor: Daniel Lambert

Dieses Dokument Bravais-Pearsonscher Korrelationskoeffizient ist Teil eines interaktiven Online-Kurses zum Thema Deskriptive Statistik.

Dipl.-Math. Dipl.-Kfm. Daniel Lambert gibt seit vielen Jahren Kurse zur Prüfungsvorbereitung. Er unterrichtet stets orientiert an alten Prüfungen und weiß aus langjähriger Erfahrung, wie sich komplexe Sachverhalte am besten aufbereiten und vermitteln lassen. Daniel Lambert ist Repetitor aus Leidenschaft seit nunmehr 20 Jahren.
Vorstellung des Online-Kurses Deskriptive StatistikDeskriptive Statistik
Dieser Inhalt ist Bestandteil des Online-Kurses

Deskriptive Statistik

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundbegriffe der deskriptiven Statistik
    • Einleitung
      • Statistische Datenauswertung
      • Merkmal, Merkmalsausprägung und Merkmalsträger
    • Masse und Merkmal
      • Statistische Masse
      • Statistisches Merkmal
    • Skalierungen
      • Grundlagen Skalierung
      • Nominalskala
      • Ordinalskala
      • Metrische Skalen
      • Metrische Skalen - Intervallskala
      • Metrische Skalen - Verhältnisskala
      • Metrische Skalen - Absolutskala
      • Skalenniveau bestimmen
      • Aufgabe Skalierung
      • Lösung Aufgabe Skalierung
    • Skalentransformation
      • Grundlagen Skalentransformation
      • Skalentransformation auf der Nominalskala
      • Skalentransformation auf der Ordinalskala
      • Skalentransformation auf der Kardinalskala
    • Abzählbarkeit
      • Diskrete Merkmale
      • Stetige Merkmale
    • Quasistetige Merkmale und Klassierung
      • Gründe für quasistetige Merkmale
      • Quasistetige Merkmale
      • Klassierung
    • Selbstkontrollaufgabe zu den Grundbegriffen der deskriptiven Statistik
      • Aufgabe Merkmale
      • Lösung Aufgabe Merkmale
  • Häufigkeitsverteilungen
    • Unklassierte Daten und ihre Darstellung
      • Grundlagen der Häufigkeitsverteilung
      • Häufigkeiten
      • Absolute Häufigkeiten
      • Relative Häufigkeit
      • Graphische Darstellung
      • Stabdiagramm oder Säulendiagramm
      • Kreisdiagramm
    • Klassierte Daten und ihre Darstellung
      • Grundlagen Klassierung
      • Klassierung und ihre Darstellung
      • Histogramm
      • Aufgabe Histogramm
      • Lösung Aufgabe Histogramm
      • Häufigkeitspolygon
      • Regeln zur Klassenbildung in der Statistik
    • Empirische Verteilungsfunktion
      • Beispiel und Eigenschaften der Verteilungsfunktion
      • Beispielaufgabe empirische Verteilungsfunktion
    • Selbstkontrollaufgaben zu den Häufigkeitsverteilungen
      • Aufgabe Urliste und Median
      • Lösung Aufgabe Urliste und Median
  • Verteilungsmaße
    • Lagemaße
      • Modus
      • Fraktile
      • Median
      • Boxplot
      • Arithmetisches Mittel
      • Geometrisches Mittel
      • Harmonisches Mittel
      • Zusammenfassung Lagemaße
    • Streuungsmaße
      • Unterschiedliche Streuungsmaße
      • Streuungszerlegung
      • Mittlere quadratische Abweichung berechnen
    • Formmaße
      • Unterschiedliche Formmaße
      • Schiefe
      • Wölbung
  • Konzentrationsmessung
    • Einleitung
      • Konzentrationsmaße
    • Relative Konzentration
      • Übersicht relative Konzentration
      • Lorenzkurve
      • Gini-Koeffizient
      • Länge der Lorenzkurve
      • Concentration-Ratio
    • Absolute Konzentration
      • Übersicht absolute Konzentration
      • Absolute Konzentrationskurve
      • Herfindahl-Index
      • Exponentialindex
      • Rosenbluth-Index
  • Mehrdimensionale Verteilungen
    • Mehrdimensionale Verteilung - Einführung
    • Gemeinsame Verteilung
    • Randverteilungen
    • Bedingte Verteilungen
    • Unabhängigkeit
    • Beispiel mehrdimensionale Verteilung
  • Zusammenhangsmaße
    • Zusammenhangsmaße auf Nominal- und Ordinalskala
      • Korrelationsanalyse
      • Zusammenhangsmaße auf der Nominalskala
      • Zusammenhangsmaße auf der Ordinalskala
    • Zusammenhangsmaße auf metrischen Skalen
      • Übersicht Zusammenhangsmaße auf metrischen Skalen
      • Bravais-Pearsonscher Korrelationskoeffizient
      • Korrelationskoeffizient von Fechner
  • Zeitreihenanalyse
    • Einleitung
      • Längsschnittdaten und Querschnittdaten
    • Zeitreihenverfahren
      • Verfahren der Zeitreihenanalyse
      • Methode der gleitenden Durchschnitte
      • Exponentielle Glättung
      • Beispiel Methode der Kleinsten Quadrate
      • Methode der Kleinsten Quadrate
      • Exkurs: Linearisierung
      • Methode der Reihenhälften
    • Zeitreihenzerlegung
      • Zeitreihenzerlegung
  • Indexrechnung
    • Grundbegriffe
      • Verhältniszahlen
    • Preisindizes
      • Definition Preisindizes
      • Preisindizes nach Laspeyres und Paasche
      • Indexrechnung mit Preisindizes
    • Mengenindizes
      • Definition Mengenindizes
      • Mengenindizes nach Laspeyres und Paasche
    • Wertindizes
      • Der Wertindex
    • Weitere Indizes
      • Übersicht weitere Indizes
      • Index nach Lowe
      • Fisherscher Idealindex
      • Marshall-Edgeworth-Preisindex
    • Umbasierung und Verkettung von Indizes
      • Die Rundprobe
      • Umbasierung
      • Verkettung
  • 103
  • 27
  • 181
  • 37
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 22.07.2015:
    "gut aufgebaut, gut verständlich"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 18.10.2014:
    "Man super. Mein Professor hat mich total mit seinen Ausführungen verwirrt, wo doch die Antwort so einfach ist. Vielen Dank Herr Lambert. Ich finde sowieso, dass Sie der Beste sind :o)"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 01.09.2014:
    "sehr gut erklärt, schnell verständlich. Gute Beispiele!"

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 06.07.2014:
    "Locker flockig an anschaulichen Beispielen ausführlich erklärt."

  • Gute Bewertung für Deskriptive Statistik

    Ein Kursnutzer am 14.06.2014:
    "Perfekt erklärt, danke!!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen