ZU DEN KURSEN!

Grundlagen der Mikroökonomie - Berechnung des Gewinnmaximums im Monopol

Kursangebot | Grundlagen der Mikroökonomie | Berechnung des Gewinnmaximums im Monopol

Grundlagen der Mikroökonomie

Berechnung des Gewinnmaximums im Monopol

x
Juracademy JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien für deine Prüfungsvorbereitung erwarten dich:
wiwiweb.de Flatrate


1272 Lerntexte mit den besten Erklärungen

412 weitere Lernvideos von unseren erfahrenen Dozenten

3121 Übungen zum Trainieren der Inhalte

516 informative und einprägsame Abbildungen

Nach der theoretischen Betrachtung, kommen wir nun zu der praktischen Bestimmung des Gewinnmaximums im Monopol.

Damit ein Monopolist sein Optimum errechnen kann, benötigt er zuerst seine Kostenfunktion. Also die Funktion, die angibt, welche Kosten ihm bei einer bestimmten Produktionsmenge entstehen. Da es keinen Marktpreis gibt, benötigt er die Nachfragefunktion. Diese Funktion gibt den Preis in Abhängigkeit von der angebotenen Menge an.

Wir nehmen folgende Funktionen an:
Beispiel Kostenfunktion: K = 10y + 50
Beispiel Nachfragefunktion: P = 300-2y

Aus diesen beiden Funktionen können wir nun unsere Zielfunktion bestimmen: $\ G = U-K $. Der Umsatz setzt sich wieder aus Preis mal Menge zusammen, nur haben wir diesmal nicht einen festen Preis, sondern eine Funktion, die den Preis angibt. Diese Funktion muss mit der Menge multipliziert werden. In unserem Beispiel wäre dies dann:
$\ U = p \cdot y = (300 - 2y) \cdot y $ oder ausmultipliziert: $\ U = 300y - 2y^2 $.
Die Kostenfunktion kann so übernommen werden.

Berechnung der optimalen Menge

Die gesamte Zielfunktion lautet nun: $\ maxG = 300y - 2y^2 - (10y+50) $
Ein kurze Umformung ergibt: $\ maxG = 300y - 2y^2 - 10y - 50 = 290y - 2y^2 - 50 $
Um das Maximum dieser Formel zu errechnen, muss sie wieder nach y abgeleitet und gleich Null gesetzt werden.
$\ {dG \over dy} = -4y + 290 = 0 $

Methode

Die Fixkosten in Höhe von 50 fallen hier weg; für die Entscheidung der optimalen Produktionsmenge sind sie nicht wichtig!

Diese einfache Funktion muss nur noch nach y aufgelöst werden.
$\ -4y + 290 = 0 $
$\ -4y = -290 $
$\ y = 72,5 $

Damit haben wir die optimale Menge errechnet und können durch Einsetzten den Gewinn ermitteln.

Ermittlung des Preises und des Gewinns

$\ G = 290 \cdot 72,5 - 2 \cdot 72,5^2 - 50 = 10.462,5 $
Der Marktpreis liegt bei: $\ P = 300 - 2 \cdot 72,5 = 155 $

Betrachten wir noch einmal die nicht umgeformte Gewinnfunktion: $\ maxG = 300y-2y^2 - (10y+50) $.
Leiten wir sie direkt ab, erhalten wir: $\ {dG \over dy } = 300 - 4y -10 = 0 $. Der Ausdruck "300-4y" gibt den Grenzerlös MR an. Die "-10" sind die Grenzkosten. In diesem Fall sind sie konstant. Bringen wir die Grenzkosten auf die andere Seite, ergibt dies formell: MR=MC. Dies ist genau die Bedingung, die wir im theoretischen Teil vorher bestimmt haben.

Die Bestimmung und Berechnung des Gewinnmaximums im Monopol wird häufig in Mikroökonomie-Prüfungen abgefragt. Daher geht das folgenden Video nochmals anhand eines Beispiels darauf ein.

Lernvideo - Berechnung des Gewinnmaximums im Monopol

Video: Berechnung des Gewinnmaximums im Monopol