wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Mikroökonomie
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse

Berechnung des Gewinnmaximums im Monopol

WebinarTerminankündigung aus unserem Online-Kurs Recht und Steuern:
 Am 08.12.2016 (ab 19:30 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Überblick Umsatzsteuer
- In diesem 60-minütigen Gratis-Webinar gibt Daniel Lambert einen Überblick über die Umsatzsteuer.
[weitere Informationen] [Terminübersicht]

Nach der theoretischen Betrachtung, kommen wir nun zu der praktischen Bestimmung des Gewinnmaximums im Monopol.

Damit ein Monopolist sein Optimum errechnen kann, benötigt er zuerst seine Kostenfunktion. Also die Funktion, die angibt, welche Kosten ihm bei einer bestimmten Produktionsmenge entstehen. Da es keinen Marktpreis gibt, benötigt er die Nachfragefunktion. Diese Funktion gibt den Preis in Abhängigkeit von der angebotenen Menge an.

Wir nehmen folgende Funktionen an:
Beispiel Kostenfunktion: K = 10y + 50
Beispiel Nachfragefunktion: P = 300-2y

Aus diesen beiden Funktionen können wir nun unsere Zielfunktion bestimmen: $\ G = U-K $. Der Umsatz setzt sich wieder aus Preis mal Menge zusammen, nur haben wir diesmal nicht einen festen Preis, sondern eine Funktion, die den Preis angibt. Diese Funktion muss mit der Menge multipliziert werden. In unserem Beispiel wäre dies dann:
$\ U = p \cdot y = (300 - 2y) \cdot y $ oder ausmultipliziert: $\ U = 300y - 2y^2 $.
Die Kostenfunktion kann so übernommen werden.

Berechnung der optimalen Menge

Die gesamte Zielfunktion lautet nun: $\ maxG = 300y - 2y^2 - (10y+50) $
Ein kurze Umformung ergibt: $\ maxG = 300y - 2y^2 - 10y - 50 = 290y - 2y^2 - 50 $
Um das Maximum dieser Formel zu errechnen, muss sie wieder nach y abgeleitet und gleich Null gesetzt werden.
$\ {dG \over dy} = -4y + 290 = 0 $

Methode

Die Fixkosten in Höhe von 50 fallen hier weg; für die Entscheidung der optimalen Produktionsmenge sind sie nicht wichtig!

Diese einfache Funktion muss nur noch nach y aufgelöst werden.
$\ -4y + 290 = 0 $
$\ -4y = -290 $
$\ y = 72,5 $

Damit haben wir die optimale Menge errechnet und können durch Einsetzten den Gewinn ermitteln.

Ermittlung des Preises und des Gewinns

$\ G = 290 \cdot 72,5 - 2 \cdot 72,5^2 - 50 = 10.462,5 $
Der Marktpreis liegt bei: $\ P = 300 - 2 \cdot 72,5 = 155 $

Betrachten wir noch einmal die nicht umgeformte Gewinnfunktion: $\ maxG = 300y-2y^2 - (10y+50) $.
Leiten wir sie direkt ab, erhalten wir: $\ {dG \over dy } = 300 - 4y -10 = 0 $. Der Ausdruck "300-4y" gibt den Grenzerlös MR an. Die "-10" sind die Grenzkosten. In diesem Fall sind sie konstant. Bringen wir die Grenzkosten auf die andere Seite, ergibt dies formell: MR=MC. Dies ist genau die Bedingung, die wir im theoretischen Teil vorher bestimmt haben.

Die Bestimmung und Berechnung des Gewinnmaximums im Monopol wird häufig in Mikroökonomie-Prüfungen abgefragt. Daher geht das folgenden Video nochmals anhand eines Beispiels darauf ein.

Lernvideo - Berechnung des Gewinnmaximums im Monopol

Video: Berechnung des Gewinnmaximums im Monopol

Mithilfe der Kostenfunktion und der Nachfragefunktion kann das Gewinnmaximum eines Monopolisten berechnet werden.
Multiple-Choice
Ein Monopolist hat folgende Gewinnfunktion: G=(800-6y)y-(2y+1.500). Wie hoch ist der Gewinn bei einer Produktion von 85 Einheiten?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Kommentare zum Thema: Berechnung des Gewinnmaximums im Monopol

  • Maren Nebeling schrieb am 03.08.2016 um 07:33 Uhr
    Hallo, das siehst du genau richtig. Die Nachfragefunktion P=300-2y ist ein Beispiel für eine inverse Nachfragefunktion, da der Preis in Abhängigkeit von der Menge betrachtet wird. Liebe Grüße Katrin
  • DeenSilver schrieb am 01.08.2016 um 13:48 Uhr
    Danke für die schnelle Antwort! Das meine ich ja auch, dass es sich im obigen Fall um eine inverse Nachfragefunktion handelt. "Beispiel Nachfragefunktion: P = 300-2y" Dann wäre das ja ein Beispiel für eine inverse (!) Nachfragefunktion oder stehe ich jetzt komplett auf dem Schlauch?
  • Katrin Latsch schrieb am 28.07.2016 um 10:08 Uhr
    Hallo, vielen Dank für deinen Hinweis. Im obigen Fall handelt es sich jedoch um eine inverse Nachfragefunktion, da der Preis in Abhängigkeit von der Menge betrachtet wird. Bei der "normalen" Nachfragefunktion betrachten wir immer die Menge in Abhängigkeit vom Preis. Beste Grüße Katrin
  • DeenSilver schrieb am 27.07.2016 um 16:16 Uhr
    p = 300-2y müsste doch die Preis-Absatz-Funktion sein - also die inverse Nachfragefunktion oder? Bei der Aufgabe wäre es ja demnach dann nicht die inverse, sondern die "normale" Nachfragefunktion.
Vorstellung des Online-Kurses Grundlagen der MikroökonomieGrundlagen der Mikroökonomie
Dieser Inhalt ist Bestandteil des Online-Kurses

Mikroökonomie

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundlagen und Begriffe der Mikroökonomie
    • Begriffe der Mikroökonomie
      • Der Unterschied zwischen Makroökonomie und Mikroökonomie
      • Prinzipien der Mikroökonomie
      • Exogene und endogene Variablen im Modell
    • Komparative Statik
      • Die Nachfragekurve
      • Übung zur Nachfragekurve
      • Die Angebotskurve
      • Übung zur Angebotskurve
      • Das Gleichgewicht
      • Exogene Effekte
    • Mathematische Grundlagen
      • Mathematische Grundlagen
      • Funktionen mit zwei Variablen
    • Elastizität
      • Grundlagen der Elastizität
      • Bestimmungsfaktoren der Elastizität
      • Elastizität des Angebots
      • Berechnung der Elastizität der Nachfrage
    • Wohlfahrt
      • Konsumentenrente und Produzentenrente
      • Die gesamte Wohlfahrt
      • Staatliche Eingriffe
      • Steuern, ein weiterer staatlicher Eingriff
      • Wohlfahrtsverlust durch Steuern
  • Theorie der Haushaltsnachfrage
    • Formale Herleitung
      • Güter und Budgetbeschränkung
      • Die Budgetgerade
    • Preis- und Einkommensänderungen
      • Einkommensänderungen und Preisänderungen
      • Staatliche Eingriffe und die Budgetgerade
    • Güterbündel und Indifferenzkurven
      • Definition zum Güterbündel
      • Annahmen über die Präferenzen
      • Indifferenzkurven
      • Beispiele für Indifferenzkurven
    • Grenzrate der Substitution
      • Definition der Grenzrate der Substitution
      • Zahlenbeispiel zur Grenzrate der Substitution
    • Der Nutzen
      • Grundannahmen zum Nutzen
      • Nutzenfunktionen
      • Grenznutzen und MRS
  • Die optimale Entscheidung
    • Das Haushaltsoptimum
      • Grafische Bestimmung des Optimums
      • Die mathematische Bestimmung bei perfekten Substituten
      • Die mathematische Bestimmung bei perfekten Komplementen
      • Die mathematische Bestimmung bei einer Cobb-Douglas-Nutzenfunktion
      • Die Lagrange-Methode
      • Übung zur Bestimmung des Optimums
    • Slutsky-Zerlegung
      • Substitutionseffekt und Einkommenseffekt
      • Die Berechnung von Einkommens- und Substitutionseffekt
      • Einkommens - und Substitutionseffekt bei verschiedenen Güterarten
      • Übung Slutsky-Zerlegung
  • Nachfrageänderung und die Marktnachfrage
    • Individuelle Nachfrageänderung
      • Einkommensänderung
      • Beispiele für Einkommenskonsumkurven
      • Die Engel-Kurve
      • Preisänderung
      • Berechnung der Nachfragekurven
    • Die Marktnachfrage
      • Aggregation der Nachfrage
      • Mathematische Aggregation
      • Die Preiselastizität der Nachfrage
      • Berechnung der Elastizität ohne Nachfragefunktion
      • Übung Aggregation der Nachfrage
  • Theorie des Unternehmens
    • Formale Herleitung
      • Theorie des Unternehmens
      • Produktionsfunktionen
      • Isoquanten
    • Grenzprodukt und Technische Rate der Substitution
      • Das Grenzprodukt
      • Abnehmendes Grenzprodukt
      • Technische Rate der Substitution
      • Skalenerträge
      • Mathematische Bestimmung der Skalenerträge
    • Gewinnmaximierung
      • Einführung Unternehmenstheorie
      • Isogewinnlinien
      • Gewinnmaximierung mit einem variablen Faktor
      • Übung Gewinnmaximierung mit einem variablen Faktor
      • Gewinnmaximierung bei zwei variablen Faktoren
      • Übung Gewinnmaximierung mit zwei variablen Faktoren
      • Preisänderungen
  • Die lange und kurze Frist bei Kosten
    • Kosten im Zeitablauf
      • Kostenarten
      • Die Grenzkosten
      • Grenzkosten und variable Kosten
      • Kosten in der langen Frist
      • Grafische Gewinnermittlung
    • Das Angebot der Unternehmen
      • Annahmen zum Angebot
      • Gewinnmaximale Produktionsmenge
      • Optimum bei S-förmiger Kostenkurve
      • Preisuntergrenzen
      • Langfristige Angebotseffekte
  • Monopol und Oligopol
    • Monopol
      • Definition Monopol
      • Monopol Entstehung und Zerschlagung
      • Preis und Menge im Monopol
      • Berechnung des Gewinnmaximums im Monopol
      • Die Ineffizienz des Monopols
      • Übungsaufgabe Monopol
    • Oligopol
      • Definition Oligopol
      • Das Kartell
      • Übungsaufgabe Kartell
      • Das Kartell aus Sicht der Spieltheorie
      • Cournot-Nash-Gleichgewicht
      • Übung Cournot-Nash-Gleichgewicht
      • Bertrand-Wettbewerb
      • Stackelberg-Führerschaft
      • Übungsaufgabe Stackelberg-Führerschaft
  • 93
  • 23
  • 206
  • 128
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 20.06.2016:
    "Sehr gut verständlich mit super Beispielen, Spaß beim Lernen "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 20.05.2016:
    "Sehr gute und hilfreiche Artikel!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 05.05.2016:
    "Sehr gute Ergänzung zu meinen Unterlagen der Uni."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 18.03.2016:
    "einfach erklärt "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 11.01.2016:
    "Alles sehr verständlich!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 23.12.2015:
    "Der Einstieg war recht banal, aber der Matheteil eine sehr gute und wichtige Wiederholung."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 09.12.2015:
    "Super aufgebauter Kurs! Sogar die falsch beantworteten Fragen werden zwischendurch wiederholt gefragt und man lernt wie am Schnürchen."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 17.09.2015:
    "Alles sehr gut erklärt, vorallem die Wiederholungen der notwensdigen mathematischen Formeln in den Videos."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 10.09.2015:
    "hilfreich und gut erklärt"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 03.09.2015:
    "Zusammenhänge super einfach erklärt, wofür der Prof zig Seiten Geschwafel braucht."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 24.06.2015:
    "Gute Ergänzungen durch Videos Steigende Schwierigkeit erleichtert den Einstieg"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 29.03.2015:
    "Guter Kurs, evt. sind die gestellten Fragen etwas zu leicht. Ansonsten alles Top! "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 21.02.2015:
    "Top!!!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 13.02.2015:
    "in leichter Sprache geschrieben, gut verständlich"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 04.02.2015:
    "Sehr gute Erklärungen! "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 29.01.2015:
    "Ist gut und einfach erklärt, danke"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 17.01.2015:
    "Besser als so manche Übung in der Uni "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 04.12.2014:
    "Der Kurs wird mir mit Sicherheit die Note in der Mikroökonomik Prüfung retten. Ich bin sehr glücklich darüber, dass ich auf diesen Kurs gestoßen bin! Besten Dank, Julia!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 16.11.2014:
    "Die Videos sind super "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 28.06.2014:
    "Einfach nur super! Vielen Dank für diesen Kurs. Was ich letztes Semester und in diesem neuen 2. Semester immer noch nicht verstanden hatte, habe ich nun mit Hilfe dieses Kurses geschafft. Die wissenschaftlichen Bücher mit ihren knappen Erläuterungen sind schwer zu durchdringen. Hier wird alles wichtige und relevante, ohne was auszulasen, in Angriff genommen. Nun versteht man auch die Lehrbücher und man sieht und merkt wie undidaktisch diese gestaltet sind: Schulnote 6 würde es treffender bezeichnen. Bin sehr zufrieden mit diesem Kurs und das Geld hat sich mehr gelohnt, als in irgedein Lehrbuch zu investieren oder Nachhilfe zu nehmen."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen