wiwiweb
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Mikroökonomie
Den Kurs kaufen für:
einmalig 29,00 €
Zur Kasse
Grundlagen und Begriffe der Mikroökonomie > Mathematische Grundlagen:

Funktionen mit zwei Variablen

WebinarTerminankündigung aus unserem Online-Kurs Abgabenordnung:
 Am 08.12.2016 (ab 18:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar Diskrete und stetige Verteilungen in der Wahrscheinlichkeitsrechnung
- In diesem 60-minütigen Gratis-Webinar gehen wir darauf ein, welche diskreten und stetigen Verteilungen Sie in der Prüfung beherrschen müssen.
[weitere Informationen] [Terminübersicht]

Einige Funktionen, denen wir begegnen, sind von zwei Variablen abhängig. Diese Funktionen können fast genauso abgeleitet werden wie Funktionen mit einer Variablen. Der "Trick" ist, einfach eine der Variablen als Konstante anzusehen.

Allgemein:

Ableitung

Diese Funktion soll nun nach $\ x_1 $ und $\ x_2 $ abgeleitet werden.

Ableitung nach $\ x_1 $:

Ableitung

Die Potenz der Variablen wird als multiplizierender Faktor vor die Funktion geschrieben und die Potenz um 1 reduziert. Die andere Variable bleibt unberührt.

Analog ergibt die Ableitung nach $\ x_2 $:

Ableitung

In diesem Beispiel sind beide Variablen Multiplikatoren.

Partielle Ableitungen dividieren

Es wird häufiger vorkommen, dass wir eine der beiden partiellen Ableitungen durch die andere teilen und gleich einem Wert setzen. Die beiden Funktionen zu dividieren ist allerdings leichter als es zuerst scheint.
Dividieren wir beide Funktionen beispielhaft und setzen sie gleich dem Verhältnis $\ s \over t $.

image

a kürzt sich weg; der Teil unter dem Bruchstrich wird umgeschrieben, siehe dazu die Umformungen am Ende des vorherigen Matheteils!

image

Die Vorzeichen der Potenzen des Teils unter dem Bruchstrich haben sich umgekehrt und der Bruchstrich wurde zum "Mal-Punkt".

Werden gleiche Variablen wie x und x multipliziert, addieren sich ihre Potenzen. Somit wird die lange Funktion zu einer einfachen Additionsaufgabe.

image

Sieht schon besser aus. Nutzen wir noch einmal die Umformungen, so erhalten wir:

image

Ein letzter Punkt soll noch angesprochen werden. Eine Funktion der folgenden Form soll nach einer der beiden Variablen aufgelöst werden:

image

Solch eine Funktion können wir zum Beispiel durch partielles Ableiten erhalten. Dann liegen aber zwei davon vor. Durch das Auflösen nach einer Variablen kann in der anderen Funktion dann diese Variable ersetzt werden.

Die Funktion soll beispielhaft nach x aufgelöst werden:

Zuerst stellen wir nur ein wenig um:

image

Durch b dividieren und es ergibt sich folgende Zeile:

image

Nun fehlt nur noch die Potenz s von x. Dazu müssen beide Seiten der Gleichung mit dem Kehrwert von s, also $\ 1\over s $ potenziert werden.

image

Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Auch eine Funktion, die von zwei Variablen abhängig ist, lässt sich ableiten. Um diesen Schritt einfacher zu gestalten wird eine der Variablen als angesehen.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Kommentare zum Thema: Funktionen mit zwei Variablen

  • Lukas Linnig schrieb am 28.07.2014 um 21:01 Uhr
    Hallo, vielen Dank für den Hinweis! Es handelt sich um ein Beispiel. Um ein Eindenken zu ermöglichen hat er der Autor die Variablen x und y verwendet. Liebe Grüße
  • felixbissa schrieb am 19.05.2014 um 14:36 Uhr
    hallo, bei den ableitungsregeln wäre es doch besser die Variablen auch x1 und x2 zu nennen. Denn bei der partiellen Ableitung diffierenziert ihr nach x1 und x2, im term stehen dann aber x und y. LG
Vorstellung des Online-Kurses Grundlagen der MikroökonomieGrundlagen der Mikroökonomie
Dieser Inhalt ist Bestandteil des Online-Kurses

Mikroökonomie

wiwiweb - Interaktive Online-Kurse (wiwiweb.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Grundlagen und Begriffe der Mikroökonomie
    • Begriffe der Mikroökonomie
      • Der Unterschied zwischen Makroökonomie und Mikroökonomie
      • Prinzipien der Mikroökonomie
      • Exogene und endogene Variablen im Modell
    • Komparative Statik
      • Die Nachfragekurve
      • Übung zur Nachfragekurve
      • Die Angebotskurve
      • Übung zur Angebotskurve
      • Das Gleichgewicht
      • Exogene Effekte
    • Mathematische Grundlagen
      • Mathematische Grundlagen
      • Funktionen mit zwei Variablen
    • Elastizität
      • Grundlagen der Elastizität
      • Bestimmungsfaktoren der Elastizität
      • Elastizität des Angebots
      • Berechnung der Elastizität der Nachfrage
    • Wohlfahrt
      • Konsumentenrente und Produzentenrente
      • Die gesamte Wohlfahrt
      • Staatliche Eingriffe
      • Steuern, ein weiterer staatlicher Eingriff
      • Wohlfahrtsverlust durch Steuern
  • Theorie der Haushaltsnachfrage
    • Formale Herleitung
      • Güter und Budgetbeschränkung
      • Die Budgetgerade
    • Preis- und Einkommensänderungen
      • Einkommensänderungen und Preisänderungen
      • Staatliche Eingriffe und die Budgetgerade
    • Güterbündel und Indifferenzkurven
      • Definition zum Güterbündel
      • Annahmen über die Präferenzen
      • Indifferenzkurven
      • Beispiele für Indifferenzkurven
    • Grenzrate der Substitution
      • Definition der Grenzrate der Substitution
      • Zahlenbeispiel zur Grenzrate der Substitution
    • Der Nutzen
      • Grundannahmen zum Nutzen
      • Nutzenfunktionen
      • Grenznutzen und MRS
  • Die optimale Entscheidung
    • Das Haushaltsoptimum
      • Grafische Bestimmung des Optimums
      • Die mathematische Bestimmung bei perfekten Substituten
      • Die mathematische Bestimmung bei perfekten Komplementen
      • Die mathematische Bestimmung bei einer Cobb-Douglas-Nutzenfunktion
      • Die Lagrange-Methode
      • Übung zur Bestimmung des Optimums
    • Slutsky-Zerlegung
      • Substitutionseffekt und Einkommenseffekt
      • Die Berechnung von Einkommens- und Substitutionseffekt
      • Einkommens - und Substitutionseffekt bei verschiedenen Güterarten
      • Übung Slutsky-Zerlegung
  • Nachfrageänderung und die Marktnachfrage
    • Individuelle Nachfrageänderung
      • Einkommensänderung
      • Beispiele für Einkommenskonsumkurven
      • Die Engel-Kurve
      • Preisänderung
      • Berechnung der Nachfragekurven
    • Die Marktnachfrage
      • Aggregation der Nachfrage
      • Mathematische Aggregation
      • Die Preiselastizität der Nachfrage
      • Berechnung der Elastizität ohne Nachfragefunktion
      • Übung Aggregation der Nachfrage
  • Theorie des Unternehmens
    • Formale Herleitung
      • Theorie des Unternehmens
      • Produktionsfunktionen
      • Isoquanten
    • Grenzprodukt und Technische Rate der Substitution
      • Das Grenzprodukt
      • Abnehmendes Grenzprodukt
      • Technische Rate der Substitution
      • Skalenerträge
      • Mathematische Bestimmung der Skalenerträge
    • Gewinnmaximierung
      • Einführung Unternehmenstheorie
      • Isogewinnlinien
      • Gewinnmaximierung mit einem variablen Faktor
      • Übung Gewinnmaximierung mit einem variablen Faktor
      • Gewinnmaximierung bei zwei variablen Faktoren
      • Übung Gewinnmaximierung mit zwei variablen Faktoren
      • Preisänderungen
  • Die lange und kurze Frist bei Kosten
    • Kosten im Zeitablauf
      • Kostenarten
      • Die Grenzkosten
      • Grenzkosten und variable Kosten
      • Kosten in der langen Frist
      • Grafische Gewinnermittlung
    • Das Angebot der Unternehmen
      • Annahmen zum Angebot
      • Gewinnmaximale Produktionsmenge
      • Optimum bei S-förmiger Kostenkurve
      • Preisuntergrenzen
      • Langfristige Angebotseffekte
  • Monopol und Oligopol
    • Monopol
      • Definition Monopol
      • Monopol Entstehung und Zerschlagung
      • Preis und Menge im Monopol
      • Berechnung des Gewinnmaximums im Monopol
      • Die Ineffizienz des Monopols
      • Übungsaufgabe Monopol
    • Oligopol
      • Definition Oligopol
      • Das Kartell
      • Übungsaufgabe Kartell
      • Das Kartell aus Sicht der Spieltheorie
      • Cournot-Nash-Gleichgewicht
      • Übung Cournot-Nash-Gleichgewicht
      • Bertrand-Wettbewerb
      • Stackelberg-Führerschaft
      • Übungsaufgabe Stackelberg-Führerschaft
  • 93
  • 23
  • 206
  • 128
einmalig 29,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 20.06.2016:
    "Sehr gut verständlich mit super Beispielen, Spaß beim Lernen "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 20.05.2016:
    "Sehr gute und hilfreiche Artikel!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 05.05.2016:
    "Sehr gute Ergänzung zu meinen Unterlagen der Uni."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 18.03.2016:
    "einfach erklärt "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 11.01.2016:
    "Alles sehr verständlich!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 23.12.2015:
    "Der Einstieg war recht banal, aber der Matheteil eine sehr gute und wichtige Wiederholung."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 09.12.2015:
    "Super aufgebauter Kurs! Sogar die falsch beantworteten Fragen werden zwischendurch wiederholt gefragt und man lernt wie am Schnürchen."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 17.09.2015:
    "Alles sehr gut erklärt, vorallem die Wiederholungen der notwensdigen mathematischen Formeln in den Videos."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 10.09.2015:
    "hilfreich und gut erklärt"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 03.09.2015:
    "Zusammenhänge super einfach erklärt, wofür der Prof zig Seiten Geschwafel braucht."

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 24.06.2015:
    "Gute Ergänzungen durch Videos Steigende Schwierigkeit erleichtert den Einstieg"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 29.03.2015:
    "Guter Kurs, evt. sind die gestellten Fragen etwas zu leicht. Ansonsten alles Top! "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 21.02.2015:
    "Top!!!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 13.02.2015:
    "in leichter Sprache geschrieben, gut verständlich"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 04.02.2015:
    "Sehr gute Erklärungen! "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 29.01.2015:
    "Ist gut und einfach erklärt, danke"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 17.01.2015:
    "Besser als so manche Übung in der Uni "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 04.12.2014:
    "Der Kurs wird mir mit Sicherheit die Note in der Mikroökonomik Prüfung retten. Ich bin sehr glücklich darüber, dass ich auf diesen Kurs gestoßen bin! Besten Dank, Julia!"

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 16.11.2014:
    "Die Videos sind super "

  • Gute Bewertung für Mikroökonomie

    Ein Kursnutzer am 28.06.2014:
    "Einfach nur super! Vielen Dank für diesen Kurs. Was ich letztes Semester und in diesem neuen 2. Semester immer noch nicht verstanden hatte, habe ich nun mit Hilfe dieses Kurses geschafft. Die wissenschaftlichen Bücher mit ihren knappen Erläuterungen sind schwer zu durchdringen. Hier wird alles wichtige und relevante, ohne was auszulasen, in Angriff genommen. Nun versteht man auch die Lehrbücher und man sieht und merkt wie undidaktisch diese gestaltet sind: Schulnote 6 würde es treffender bezeichnen. Bin sehr zufrieden mit diesem Kurs und das Geld hat sich mehr gelohnt, als in irgedein Lehrbuch zu investieren oder Nachhilfe zu nehmen."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen